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The Nature of Duration Data 

• Is structured as the time to some well-defined endpoint event 

• Economic Duration data measure the time to some event. 

– Unemployment benefits stop 

– Mutual Fund fails 

– Recession ends 

– Length of a Union Strike 

• Medical Duration Data is often called Survival Data 

– Time to Death (Survival) 

– Time to an Adverse Event 

– Time to Tumor Remission 
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Advantage of Duration Data 
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Disadvantage of Duration Data 
is that it is difficult to analyze 



Copyright® 2012 mgw 

QQ Plots Show Non-normality 

ITT (Alg 3): Normality Plot for Home Analysis Data - COUGH_FREQ
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Outline of Selected  
Analysis Methods for Duration Curves 

• The Product-Limit Method 

• Accelerated Failure Time Models 

• Proportional Hazards Regression 
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The Survival (Duration) Distribution 

• S(t) is the probability that an event 
time is greater than or equal to t, 
where t can be any non-negative 
number.  

• S(t) = P[ T ≥ t ] = 1 – P[ T < t ] 

                                 = 1 – F(t) 

• S(0) = 1.0 

• S(∞) = 0.0 

• S(255) = 0.5  
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The Probability Density Function 

• The probability density function (pdf) is the first derivative of the 
cdf, F(y) 

– Slope of the cdf and the negative slope of Survival 

– d/dt [F(y)] = d/dt [ 1- S(y)] = -d/dt[S(y)] 

• Probability of failure over a very small time interval 

 

 

 

• The probability density function is an unconditional probability 
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Hazard Function 

• The hazard function is a conditional density 

• The probability that a subject fails over the next instant conditioned that 
the subject has survived up to the beginning of the interval. 
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The Hazard Function is Central to Describing the Probability 
Distributions of Duration Data 

Hazard Function:  λ(t) 

CDF:  F(t) 

Survival Curve: S(t) PDF: f(t) 
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Selected Simple Hazard Families 

Hazard 

 

Form of Log 

Hazard 

Log Hazard Family 

h(t) = λ Constant log h(t) = μ 

 

Exponential 

h(t) = λγt Linear log h(t) = μ + αt 

 

Gompertz 

 

h(t) = λtα Log Linear log h(t) = μ+ αlog(t) Weibull 
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Weibull Family of Hazard Densities 
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Gompertz Family of Hazard Densities 

• Unlike the Weibull, the Gompertz intercept is lambda, which in 
some situations is more realistic than zero or infinity 

• Gompertz is not readily available in SAS 
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Proportional Hazard Functions 

• The Exponential, Weibull and Gompertz models are all 
members of a general class known as proportional 
hazards models. 

• Two hazard functions h1(y) and h2(y) are said to be 
proportional iff: 

  h1(y) = l h2(y) , for all y > 0, 

                           where l is constant. 

• It can be shown, S1(y) = [S2(y)] l 
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Product-Limit Estimates 

• Formally the Product Limit nonparametric estimation of the 
survival function at time y is given by: 
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Computing the Product Limit Estimates 

• In SAS, only a PROC LIFETEST and TIME statements are required:  
proc lifetest; 

     time months; 

     run; 
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Product-Limit Large Sample Confidence Intervals 
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Empirical Survival Distribution is a  
Step Function of PL Estimates 
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Empirical Hazard Function for Mutual Fund Example 

Use the LT option to get hazard plots. 
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Experimental Cancer Treatment Study 

• Consider the results of a small randomized cancer trial.  

• 40 cases have been randomly assigned to two treatment groups  

– Experimental Drug + Standard  

– Standard Therapy Only  

• The response is the time from randomization to death.  

• Interested in whether the survival distributions differ between the two 
treatments.  

• The data set Exposed contains four variables: 

DAYS Follow-up time from randomization to death 

STATUS Event indicator with value 1 for death time and value 0 for 

censored time  

TREATMENT Treatment indicator, 1 if experimental, 0 if standard 

SEX M and F 
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Experimental Cancer Treatment Results 

  Experimental     Standard  

Days    Sex Days    Sex  

179 F 237* F  

256 F 156 F  

262 M 270 M  

256 F 257 M  

255 M 242 M  

224* F 157 F  

225 F 249 M  

287 M 180 F  

319 M 226 F  

264 M 268* M  

378* M 291 M  

355 M 323 M  

319 M 253 M  

256 M 206 F  

171 F 206 F  

325 M 237 M  

325 M 211 F  

217 F 229 F  

255 F 234 F  

256 F 209 F      

Mean = 269.2        Mean = 232.5 

  



Copyright® 2012 mgw 

Types of Censoring 

Directional Right Study stopped before the event occurs 

Left Event occurred before the study started 

Interval Event occurs between visits, a < T < b 

Fixed Type I Under the control of the investigator 

When the study conclusion is scheduled;  

Fixed censoring time 

Type II Fixed number of events to occur 

50 patients out of 100 have an event 

Single One censoring time 

Multiple If two or more censoring times 

e.g. 3 and 5 years 

Random 

 

Lost to Follow-up; competing risk 

These occur before the fixed censoring 

Non-informative Those censored at time, t, should be representative of all 

subjects with the same covariates, still alive at t  

None of the covariates predict censoring 

Informative Censoring mechanism and Event related 
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Non-Informative Censoring 

• All standard Survival Analysis Methods assume that censoring is random 
and non-informative 

– Those censored at time, t, should be representative of all subjects with the 
same covariates, still alive at t (Cox and Oakes, 1984) 

– In most situations adding entry time as a covariate in the model will help to 
adjust for the dependency  

• The non-informative assumption cannot be checked by any statistical test 

– A crude sensitivity test is offered by assuming best and worst case scenarios 
(Allison, chapter 8) 

– Otherwise, 

• Do everything you can to reduce drop-out censoring 

• Measure covariates likely to affect censoring 

• Cautiously interpret tests and confidence intervals 

• There are no SAS procedures for Informative Censoring 
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PL Estimates with Non-Informative Right Censoring 

• The following statements compute the product-limit estimate for the 
censored data:  

proc lifetest; 

     time days*status(0); 

     run; 

• Censored data are paired Time to Occurrence  

– In this example, the time variable is DAYS and  

– the censoring variable is STATUS  

– With value 0 indicating censored observations 

• Data for the time to occurrence of a pre-defined event obtained from n 
subjects of a clinical trial can be arranged as (y1,c1),…,(yn,cn) 

– where yi is the observed time for subject i, and, 

  

 ci 


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

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1,  if y is the survival time,

0,  if y  is censored.
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                                          Product-Limit Survival Estimates 

  

                                                              Survival 

                                                              Standard     Number      Number  

                             Days     Survival    Failure      Error       Failed       Left   

                            0.000       1.0000           0           0        0          40    

                          156.000       0.9750      0.0250      0.0247        1          39    

                          157.000       0.9500      0.0500      0.0345        2          38    

                          171.000       0.9250      0.0750      0.0416        3          37    

                          179.000       0.9000      0.1000      0.0474        4          36    

                          180.000       0.8750      0.1250      0.0523        5          35    

                          206.000       0.8250      0.1750      0.0601        7T         33    

                          209.000       0.8000      0.2000      0.0632        8          32    

                          211.000       0.7750      0.2250      0.0660        9          31    

                          217.000       0.7500      0.2500      0.0685       10          30    

                          224.000*                                           10          29    

                          225.000       0.7241      0.2759      0.0708       11          28    

                           . . .         . . .      . . .       . . .         .           . 

                          237.000       0.6207      0.3793      0.0773       15          24    

                          237.000*                                           15          23    

                          242.000       0.5937      0.4063      0.0785       16          22    

                          249.000       0.5667      0.4333      0.0795       17          21    

                          253.000       0.5397      0.4603      0.0801       18          20    

                          255.000       0.4858      0.5142      0.0807       20T         18    

                          256.000       0.3778      0.6222      0.0788       24TTT       14    

                          257.000       0.3508      0.6492      0.0776       25          13    

                          262.000       0.3238      0.6762      0.0762       26          12    

                          264.000       0.2969      0.7031      0.0745       27          11    

                          268.000*                                           27          10    

                          270.000       0.2672      0.7328      0.0727       28           9    

                          287.000       0.2375      0.7625      0.0704       29           8 

                          319.000       0.1484      0.8516      0.0599       32T          5    

                          323.000       0.1187      0.8813      0.0548       33           4    

                          325.000       0.0594      0.9406      0.0404       35T          2    

                          355.000       0.0297      0.9703      0.0291       36           1    

                          378.000*      0.0297                               36           0    

    



Copyright® 2012 mgw 

Survival Function for Experimental Cancer Treatment Data 
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Comparison between Survival Functions 

• In the Experiment Cancer Treatment Study, we’re interested 
in whether the survival distributions differ between the two 
treatments.  

• The statistical hypotheses to determine whether the 
experimental therapy can improve survival probability 
compared to standard treatment are typically expressed as: 

•            Null Ho: S1 = S2 versus 

• Alternative Ha: S1  S2 
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Comparison between Survival Functions 

• One commonly used method for comparing two survival functions is the 
log-rank test. 

• The log-rank test is known to be the most powerful test for the alternative 
hypothesis that hazard function are proportional. 

•             Null Ho: S1(y) = S2(y) versus 

• Alternative Ha: S1(y) = [S2(y)] l 

• The log-rank test for comparing two independent samples is the same as 
the Mantel-Haenszel statistic for combining results from different strata. 

• Under the assumption of hypergeometric distribution, the conditional 
expected number of patients with occurrence of events for d1k at the 
event time y(k) for the test drug is given by: 

e
n d

n
1k

1k 1k

k
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Comparing Survival Curves 

• In the Experiment Cancer Treatment Study, we’re interested in whether 

the survival distributions differ between the two treatments  

 
proc lifetest; 

     time Days*Status(0); 

     strata Treatment; 

     run; 
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Comparison between Survival Functions 

        Test of Equality over Strata 

  

                                   Pr >    

Test      Chi-Square      DF    Chi-Square 

Log-Rank      5.6485       1      0.0175   

Wilcoxon      5.0312       1      0.0249   

-2Log(LR)     0.1983       1      0.6561  
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PL Estimates for Experimental Cancer Study 
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Comparison between Survival Functions 

• The log-rank statistic is the same as the Mantel-Haenszel: 
 
 
 
 
 
 

• Under the null hypothesis of equal survival functions, the log-rank statistic 
approximately follows a central chi-square distribution with 1 degree of freedom 
when sample size is moderate. 

• Hence, the null hypothesis is rejected at the th significance level if: 
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Stratified Log-Rank Tests 

• We also plotted the survival curves by gender  

• A separation in survival curves was observed 

 

 

 

 

 

 

 

 

 

 

 

• So we wanted to test the effect of treatment stratified for gender 
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Tests for Treatment Effect Adjusting for Gender  

• SAS Code 

 
proc lifetest; 

     time Days*Status(0); 

     strata sex / group = Treatment; 

     run; 

• SAS Output 

 
 Stratified Test of Equality over Group 

  

                                   Pr >    

Test      Chi-Square      DF    Chi-Square 

Log-Rank      7.2466       1      0.0071   

Wilcoxon      5.9179       1      0.0150  
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Outline of Selected  
Analysis Methods for Duration Curves 

• The Product-Limit Method 

• Accelerated Failure Time Models 

• Proportional Hazards Regression 
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Accelerated Failure Time Models 

• Models  

– The estimates of parametric regression 

• Weibull 

• Exponential 

• Log-Normal 

– for censored survival data 

– Uses the method of Maximum likelihood 

• Si(t) = Sj(Φijt), for all t 

• Advantages 

– Accommodates left and interval censoring 

– Test shape of the hazard function 

– More efficient (smaller standard errors) 

• Parametric methods for estimation of survival time can be 
found in  

– Lee (1992) and  

– Marubini and Valsecchi (1995) 
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Recidivism Dataset 

• N = 432 inmates from Maryland Penitentiary 

• Censoring Time = 1 year 

• Dates of arrest recorded 

• Does parole lengthen the time to next arrest? 
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Fitting AFT Models 

• SAS Code 
proc lifereg data = recid02; 

     class educ01; 

     model week*arrest(0)=fin age race wexp mar paro prio 

                          educ01 / dist = weibull covb; 

                          run; 

– Class statement creates indicator variables for polytomous covariates 

– Rich array of survival distributions including the  

• generalized gamma distribution 
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Recidivism Model with Education as a CLASS Variable 

                                   Analysis of Parameter Estimates 
  

                                       Standard   95% Confidence     Chi- 

           Parameter       DF Estimate    Error       Limits       Square Pr > ChiSq 

           Intercept        1   4.4680   0.5171   3.4544   5.4816   74.65     <.0001 

           fin              1   0.2690   0.1379  -0.0012   0.5392    3.81     0.0510 

           age              1   0.0392   0.0159   0.0079   0.0705    6.04     0.0140 

           race             1  -0.2524   0.2229  -0.6893   0.1845    1.28     0.2575 

           wexp             1   0.0773   0.1522  -0.2209   0.3755    0.26     0.6114 

           mar              1   0.3013   0.2732  -0.2342   0.8368    1.22     0.2701 

           paro             1   0.0658   0.1396  -0.2078   0.3394    0.22     0.6374 

           prio             1  -0.0585   0.0213  -0.1004  -0.0167    7.53     0.0061 

           educ01        3  1  -0.5116   0.3090  -1.1172   0.0941    2.74     0.0978 

           educ01        4  1  -0.3536   0.3243  -0.9892   0.2819    1.19     0.2755 

           educ01        5  0   0.0000                                               
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Outline of Selected  
Analysis Methods for Duration Curves 

• The Product-Limit Method 

• Accelerated Failure Time Models 

• Proportional Hazards Regression 
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Primary Biliary Cirrhosis Dataset 

• In their 1991 book, Fleming and Harrington published a survival analysis dataset 
from the Mayo clinic involving primary biliary cirrhosis. The Mayo PBC Model 
published by Dickson (1989) has been extremely important in liver disease research  

• The data consist of 418 patients among which 161 had died 

• A subset of variables are: 

 

TIME Follow-up time, in years 

STATUS Event indicator with value 1 for death time and 

value 0 for censored time  

AGE Age in years from birth to study registration 

ALBUMIN Serum albumin level in gm/dl 

BILIRUBIN Serum bilirubin level in mg/dl 

EDEMA Edema presence, ordinal 0.0, 0.5, 1.0 

PROTIME Prothrombin time in seconds 
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Proportional Hazards Regression  
Model Specification 

• h(t;x) = ho(t) exp{β1x1+. . .+ βkxk} 

• where: 

– h(t;x) is the hazard function at time t for a subject with 

covariates values x1,. . .,xk 

– ho(t) is the baseline hazard function, that is, when all 

covariates equal zero 

– exp is the exponential function: exp(x)=ex 

– xi is the ith covariate in the model and   

– βi is the regression coefficient for the ith covariate xi  
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Proportional Hazards Regression  
 Remarks 

h(t;x) = ho(t) exp{β1x1+. . .+ βkxk}  

 

• Proportional hazards regression predicts the hazard 
function, not ‘Y’ as in ordinary regression 

• Baseline hazard, ho(t), can take any functional form 
with a positive value 

• The exponential function of the covariates will be 
positive 

• The model is multiplicative. There is no intercept; it is 
absorbed into the baseline function 

• The log-transform model is additive.  

– ln[h(t;x)] = ln[ho(t)] + {β1x1+. . .+ βkxk} 
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Examples of Baseline Hazards ho(t) 
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Partial Likelihood 

• Where  

– ti is the ith death time, 

– xi are the covariates, 

– Ri is the risk set at time ti (i.e. still alive and uncensored) 

 

• The numerator is the hazard of death for the subject who died at time ti 

• The denominator is the sum of hazards of death for all subjects in the risk 
set at time ti 

• The ratio reflects the likelihood of death for subject i 
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Partial Likelihood Estimation  
of the PH Model 

 

• The likelihood function can be factored into two parts: the dependent on 
ho(t) and the part dependent on the betas, β1, . . . , βk. 

• Partial likelihood uses only the betas, β1, . . . , βk, ignoring the baseline 

hazard function, ho(t). 

• Some information is lost, so the standard errors are slightly increased 

• Because the form of the baseline hazard function, ho(t), is not specified 

some robustness in the betas, β1, . . . , βk , is gained 

• The estimates of the betas, β1, . . . , βk , are still, asymptotically unbiased 
(consistent) and asymptotically normally distributed 
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Method of Partial Likelihood Estimation 
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Simple PL Example 
One Covariate, Five Observations 
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Simple PL Example 
One Dichotomous Covariate, Five Observations 

• This example shows a special case. 

• If β=0, PL =  1/4 x 1/3 x 1 

• PL increases as β increases 

• The value of β that maximizes the PL is positive infinity 
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Simple PL Example  
One Continuous Covariate, Five Observations 

• This example shows a second special case. 

• Death occurs in order, so PL increases as β increases 

• The value of β that maximizes the PL is positive infinity 

• The term for the last death equals 1 and will not contribute to the PL. 
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Time Scale for Partial Likelihood 

• PL only uses the ranks of time values 

• Actual time is not used 

• Years, Months and Weeks do not matter 

• Log(Week) vs. Week does not matter 

 

• Later we will see that for some time-dependent covariates (time*covariate 
interactions), the choice of time scale does matters 
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Methods for Tied Event Times in Partial Likelihood 

• Exact 
– Best 

– Computationally intensive 

• Discrete 
– Exact 

– Proportional Odds not Proportional Hazards 

• Efron 
– Best of approximations 

– Splus default 

• Breslow 
– Worst approximation 

– SAS Default 

– Only available method in SPSS 

• If no ties methods give identical results 
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Possible Remedial Measures for Issues in PH Modeling 

Potential implication Suggested remedy 

1 Outliers and Influential Observations PH Influence Statistics 

2 Interaction among Covariates Martingale Plots 

3 Incorrect Functional Form Cumulative Residual Plots 

4 Covariate excluded wrongly Refit model with covariate 

included 

5 Covariate modeled incorrectly  

(e.g. nonlinear effect) 

Fit non-linear term (e.g. squared 

term) 

6 Quasi-complete separation Firths Penalized Likelihood 

Maximum 

7 Correlated Responses Quasi-likelihood estimation of the 

Sandwich Variance 

8 Non-PH ? 

Wilson (2008). 
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When Hazards are Proportional  

• Hazard functions for two different levels of a covariate are 
proportional for all values of t 

• For example, if men have twice the risk of myocardial 
infarction compared to women at age 40, the risk is twice 
at age 60 

• The baseline function for age can have any form  

• The estimates of the betas are consistent (i.e. 
asymptotically unbiased) and asymptotically normally 
distributed. 

 

t

h
(t

,x
)

How do you know? 

)()( 21 thth  
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• The hazard ratio for two individuals with a different covariate, like gender 

 

h(t;x = 1)        ho(t)exp{β(x1=1)} 

                  = 

h(t;x = 0)        ho(t)exp{β(x1=0)} 

 

                  =  exp{β(x1=1 - x1=0)} = eβ 

 

• Notice how the baseline hazard function, ho(t), cancels out because it is the 
same at all time points, t. 

 

 

Hazard Ratio from PH Regression  

HR (Gender) = 
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Coding Categorical Variables with Missing Values 

• Get into the habit of coding for missing values routinely 

          if edema = . then do; 
        MildED = .; 

        SevED  = .; 

        end; 

     else if edema = 0.0 then do; 

        MildED = 0; 

        SevED  = 0; 

        end; 

     else if edema = 0.5 then do; 

        MildED = 1; 

        SevED  = 0; 

        end; 

     else if edema = 1.0 then do; 

        MildED = 0; 

        SevED  = 1; 

        end; 

• Include the Indicator variables in the model statement 

 proc phreg data = liver02; 
      model Time*Status(0) = sex age MildED SevED;  

      run; 
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                                  MidWest SAS Users Group 2008 

                                In-Conference Training Course 04 

                               Introduction to Survival Analysis 

 

 

                                      The PHREG Procedure 

                                     Model Fit Statistics 

  

                                             Without           With 

                            Criterion     Covariates     Covariates 

                            -2 LOG L        1740.013       1505.341 

                            AIC             1740.013       1517.341 

                            SBC             1740.013       1535.829 

 

 

                            Testing Global Null Hypothesis: BETA=0 

  

                    Test                 Chi-Square       DF     Pr > ChiSq 

                    Likelihood Ratio       234.6717        6         <.0001 

                    Score                  329.2670        6         <.0001 

                    Wald                   240.7266        6         <.0001 
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                               Introduction to Survival Analysis 

 

                                      The PHREG Procedure 

                            Analysis of Maximum Likelihood Estimates 

  

                           Parameter      Standard                                  Hazard 

      Variable      DF      Estimate         Error    Chi-Square    Pr > ChiSq       Ratio 

      logBili        1       0.86715       0.08291      109.3945        <.0001       2.380 

      logProtime     1       2.35341       0.77093        9.3189        0.0023      10.521 

      logAlbumin     1      -2.55101       0.64818       15.4893        <.0001       0.078 

      Age            1       0.04019       0.00768       27.3524        <.0001       1.041 

      MildED         1       0.27028       0.22495        1.4437        0.2295       1.310 

      SevED          1       0.97348       0.28943       11.3126        0.0008       2.647 

 

 

                               Linear Hypotheses Testing Results 

  

                                           Wald 

                            Label    Chi-Square      DF    Pr > ChiSq 

                            test1        4.7467       1        0.0294 
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Survivor Function for PBC Dataset 
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Polytomous Parameters Estimates 

• The coefficient for MildED reflects the difference between Mild Edema 
and the reference group (Edema = none) 

– β < 0: lower death risk for Mild than No Edema 

– β > 0: higher death risk for Mild than No Edema 

• The coefficient for SevED reflects the difference between Severe Edema 
and the reference group (Edema = none) 

– β < 0: lower death risk for Severe than No Edema 

– β > 0: higher death risk for Severe than No Edema 

• Additionally, a comparison between Mild vs. Severe might be interesting 
– Mild vs. Severe is the difference between (Mild vs. None) and (Severe vs. 

None) 

– Use the Test statement 

– Could get all pairwise comparisons 
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Measure of Explained Variation 

• In ordinary regression, R2 = proportion of variation explained by the 
model. 

• For likelihood-based procedures, we use the Generalized R2 

– = 1 – exp{-(2/n) (LL(β) – LL(0))},  

• where LL = Log Likelihood  

– = 1 – exp{- Χ2/n},  

• where Χ2 = LR test statistic 

• For PH model, perfect fit implies LL(β) = 0. 

• So a maximum possible Generalized R2 = 1 – exp{-(2/n) LL(0)} 

• If n is large the Generalized R2 is approximately 1 

• For PBC data, 

– Generalized R2 = 1 – exp{-234.6/418} = 0.43 

– Maximum possible Generalized R2 = 1 – exp{-1740.0/418} = 0.98 

 

 
 

 



Copyright® 2012 mgw 

Liver Cirrhosis Treatment Study 

• Randomized clinical trial at Mayo 

• Survival of patients with liver cirrhosis (NEJM 306:319-326) 

• Compare a new treatment, D-penicillamine with placebo 

• Data collected at randomization 

– Presence/absence of ascites 

– Prothrombin time in seconds -10 
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Proportional Hazards Model Results 

 

• h(t) = h0(t) exp{ -0.135 XTRT+1.737 XA+0.346 XP} 
 

– XTRT: 1 = D-penicillamine, 0 = placebo 
 

– XA:    1 = ascites, 0 = no ascites 
 

– XP:    Prothrombin time – 10 (Continuous variable, units in seconds) 
 

• h0(t) is the event rate at time t in the placebo arm for subjects without 
ascites with a prothrombin time of 10 seconds 

• Hazard rate of death two years post randomization for a subject on this 
trial who received the new treatment, had ascites at randomization and a 
prothrombin time of 10 seconds compared to a similar subject who 
received placebo? 

• RR = exp { -0.135 } = 0.87 
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Hazard Rate Calculations 
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Dichotomous Covariate Interactions  

• h(t;x) = ho(t)exp{β1x1+ β2x2+ β3x1x2} 

 

 

lo
g

 h
(t

;x
)

Trt A, Males

Trt B, Males

Trt A, Females

Trt B, Females
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Dichotomous Covariate Interactions 

• h(t;x) = ho(t)exp{β1x1+ β2x2+ β3x1x2} 

x1 x2 h(t;x) 

Trt A, Males 0 1 h0(t) e{β2} 

Trt B, Males 1 1 h0(t) e{β1+β2+ β3} 

Trt A, Females 0 0 h0(t)  

Trt B, Females 1 0 h0(t) e{β1} 

lo
g

 h
(t

;x
)

Trt A, Males

Trt B, Males

Trt A, Females

Trt B, Females

Modified from Marubini and Valsecchi 
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Dichotomous Covariate Interactions 

• Because the baseline hazard function h0(t) is not estimated the previous 
plot is hypothetical and cannot be created 

• Therefore, we have two options to present interactions: 

• First, present separate hazard ratios by level of covariate 

 

For example, Let β1 = -0.6 (trt) β2 = 1.4 (gender) β3 = -0.4 (intx) 

 

Males: HR (Trt B vs. Trt A) = exp(β1 + β3 ) = exp(-0.6 – 0.4) 

                                              = exp(-1) = 0.4 

Females: HR (Trt B vs. Trt A) = exp(β1) = exp(-0.6) 

                                              = exp(-0.6) = 0.6 

Trt B is better than A, but larger effect in males 
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Dichotomous Covariate Interactions 

• Secondly, plot the hazard ratios in 
comparison to the reference group 

• The reference group for this example 
is Females on Treatment A 

 

0

1

2

3

4

5

males females

H
R

Trt A

Trt B

Trt HR h(t;x) 

Males A 4.0 e{β2} 

B 1.5 e{β1+β2+ β3} 

Females A 1.0 e{1} 

B 0.6 e{β1} 
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Continuous Covariate Interactions 

• Continuous-by-Categorical Interaction 

– Plot the HR by the continuous covariate with separate line for the levels of the 
categorical covariate 

• Continuous-by-Continuous Interaction 

– Plot the HR by one of the continuous covariates, with separate lines for 
selected values of the other covariate 
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Checks on the Proportional Hazards Assumption 

• Graphical 

– Log Cumulative Hazard 

– Schoenfeld Partial Residuals 

– Standardized Score Process 

• Analytical 

– Standardized Score Process 

– Schoenfeld Partial Residuals 

– Covariate by Time Interaction 

• Continuous 

• Categorical  
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Log Cumulative Hazard 

• If the hazards are proportional: 
it can be shown that:  

 

 

• We recognize –log(S(t)) as the cumulative hazard function, H(t) 

• So this relationship implies that the Log Cumulative Hazard for the two 
groups differs by a constant. 

• Plots of the log cumulative hazard would be parallel 

• Departures from parallelism would be consistent with violations of the PH 
assumption. 

)()( 21 thth  
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Synthetic, Censored Time-to-Event Datasets 

• Clinical Trial Format for Acute Coronary Syndrome 

• A subset of variables are: 

 

 

 

 

 

 

 

 

TIME Follow-up time, in years 

STATUS Event indicator with value 1 for death time and value 0 

for censored time  

TREATMENT Dichotomous Treatment Variable 

AGE Age in years continuous 

TROPININ Diagnostic Cardiac Tropinin-T (cTnT; in µg/L) 

Melanson 2007 

Failure times generated from Weibull hazard:  
h(t) = λγ(λt)γ-1  
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Weibull Parameter Values for Six Hazard Patterns 

Control Group Investigational Group 

Case Hazards Pattern Shape (λ) Scale (γ) Shape (λ) Scale (γ)   

1 Constant (1)  2.00 2.00 2.00 2.00   

2 Constant (2) 1.00 1.00 1.00 2.00   

3 Decreasing 0.30 2.00 0.50 2.00   

4 Increasing 1.50 2.00 2.00 2.00   

5 Diverging 0.75 1.00 2.00 1.00   

6 Crossing 1.50 1.00 3.00 1.00   

Adapted from Ng’andu 1997 
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Six Patterns of Hazard Functions by Time 

The control groups are shown in red while investigational groups are shown in blue. 
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Ordinarily Generated Graphs for PH 

• Histograms with distributions 

• Survival Curves 

• Hazard Curves 

• Cumulative Hazard Curves 
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Generate Histograms 

%let pctlist = 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 ; 

 

footnote5 'Normal = Black, LogNormal = Red, Exponential = Orange,  

           Weibull = Blue, Gamma = Yellow'; 

ods trace on; 

ods output GoodnessOfFit = gof01 FitQuantiles = fq01  

           ParameterEstimates = pe01;  

proc univariate data=plotdata pctldef=5; 

     var survtime; 

     histogram /  normal      (l=3  color=black percents = &pctlist) 

                  lognormal   (theta = 0   zeta  = est sigma = est l=1  

                               color=red percents = &pctlist) 

                  exponential (theta = est sigma = est l=4   

                               color=orange percents = &pctlist) 

                  weibull     (theta = est sigma = est l=2   

                               color=blue   percents = &pctlist) 

                  gamma       (theta = est sigma = est l=8  

                               color=yellow percents = &pctlist) 

                  cframe  = ligr 

                  vaxis   = axis1 

                  name    = 'MyHist'; 

      inset n mean(5.3) std='Std Dev'(5.3) skewness(5.3) 

             / pos = ne  header = 'Summary Statistics' cfill = ywh; 

      axis1 label=(a=90 r=0); 

      run; 

 footnote5 ' '; 
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Histograms of Time-to-Event Data 

Normal = Black; Lognormal = Red; Exponential = Orange; Weibull = Blue; Gamma= Yellow 
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Generate Survival Curves 

symbol1 value=none interpol=join color = red; 

symbol2 value=none interpol=join color = blue; 

proc lifetest data = plotdata method = life plots = (s) graphics 

              intervals = 1 to 9 by 2; 

              strata trt; 

              time survtime; 

              run; 
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Six Patterns of Survival Functions by Time 
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Generate Hazards 

proc lifetest data = plotdata method = life plots = (h) graphics 

              intervals = 1 to 9 by 2; 

              strata trt; 

              time survtime; 

              run; 
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Six Patterns of Hazard Functions by Time 
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Cumulative Hazard Function 

proc phreg data = plotdata;   

     model survtime*event(0) = x1 x2 x3 trt  / ties = efron; 

     baseline out = out03 survival = s logsurv = ls loglogs = lls; run; 

 

data out04; 

     set out03; 

     ls = -ls; 

     logsurvtime = log(survtime); run; 

 

goptions reset=all ftext="arial" htext=1.5 hsize=11 in vsize=8 in 

           device=emf rotate=landscape gsfname=PlotOut4 gsfmode=replace; 

filename PlotOut4 "%nrbquote(&projlib)sasout\&saspgmn._OGSA04.emf";  

symbol1 value=none interpol=join color = blue w=2 ; 

axis1 minor=none offset=(2,2) label=(a=90 h=1.6 'Log of Survival')  

      order=0 to 110 by 10 value=(h=1.5); 

axis2 minor=none offset=(2,2) label=(h=1.6 'Survival Time') 

      order=0 to 5 by .5 value=(h=1.5);    

 

title4 h=1.8 'Cumulative Hazard Function'; 

proc gplot data = out04; 

     plot ls*survtime = trt / vaxis = axis1 haxis = axis2 nofr; 

     run; 
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Six Patterns of the Cumulative Hazard Functions by Time 
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Unadjusted Log Cumulative Hazard 

goptions reset=all ftext="arial" htext=1.5 hsize=11 in vsize=8 in 

           device=emf rotate=landscape gsfname=PlotOut5 gsfmode=replace; 

 

filename PlotOut5 "%nrbquote(&projlib)sasout\&saspgmn._GCPH01.emf";  

 

symbol1 value=dot w=2 h=1 l=1 interpol=join color = red; 

symbol2 value=dot w=2 h=1 l=1 interpol=join color = blue; 

 

title4 'Unadjusted Check for Treatment using the Log Neg Log Survival Plot'; 

proc lifetest data = plotdata method = life plots = (lls) graphics 

              intervals = 0 to 5 by 0.5; 

              strata trt; 

              time survtime; 

              run; 
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Six Patterns of the Unadjusted Log Cumulative Hazard Functions 
by Log Time 
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Adjusted Log Cumulative Hazard 

title4 'Adjusted Check for Treatment using the Log Neg Log Survival Plot'; 

proc phreg data = plotdata;   

     model survtime*event(0) = x1 x2 x3 / ties = efron; 

     strata trt; 

     baseline out = out01 

              survival = s 

              logsurv = ls 

              loglogs = lls; 

              run; 

 

data out02; 

     set out01; 

     label logsurv = 'Negative Log of Survival'; 

     if ls = . then logsurv = .; 

     else logsurv = -ls; 

     if survtime = 0 then logsurvtime = .; 

     else logsurvtime = log(survtime); 

     run; 
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Six Patterns of the Adjusted Log Cumulative Hazard Functions by 
Log Time 
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Six Patterns of the Adjusted Log Cumulative Hazard Functions by 
Time 
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Schoenfeld Partial Residuals 

• For each covariate in a PH regression, a Shoenfeld Partial Residual can be 
calculated for each case that was not censored.  

• The residual is the difference between covariate value for an individual and a 
weight mean of covariate values for all individuals. 

• Under proportional hazards, a plot of this residuals against time should be 
approximately flat.  

• Note: 
– These residuals are time independent  and 

– Baseline Hazard Function independent 

kwikik i
xxr ˆˆ 
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Schoenfeld Partial Residuals 

title4 'Ordinary Cox Regression without Adjusting for Non-PH'; 

proc phreg data = ads01;   

     model survtime*event(0) = x1 x2 x3 trt / ties = efron; 

     output   out = out05 

              ressch = schx1 schx2 schx3 schtrt; 

              run; 
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Schoenfeld Residuals for a Continuous Variable known to follow 
the Proportional Hazards Assumption by Survival Time 
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Schoenfeld Residuals for a Categorical Variable under the Null 
Hypothesis by Survival Time 

Ordinary Cox Regression without Adjusting for Non-PH
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Schoenfeld Residuals for a Categorical Variable under different 
Proportional Hazards Assumptions by Survival Time 



Copyright® 2012 mgw 

Consider Adding a LOESS smoothing line through the Schoenfeld 
Residuals 

ods output ScoreResults = ScoreResults01; 

proc loess data = phregout;  

     model resid = covariate;  

     score; run; 
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Standardized Score Process 

• Martingale Residual Transform 

– Martingale is a special sequence of random variables where the conditional 
expected value of the next observation, given all the past observations, is 
equal to the last observation 

• Tied down Brownian Process 

– Start and end at zero 

• Paths (or process) under the null hypothesis is simulated 

• Atypical observed paths are evidence of violations of proportional hazards 
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Standardized Score Process 

title4 h=1.8 'Standardized Score Process Plots to Assess the PH assumption'; 

title5 h=1.8 'Kolmogorov-type Supremum Test using the Assess statement'; 

proc phreg data = plotdata02;   

     model survtime*event(0) = trt x1 x2 x3 

           / ties = efron; 

     assess var=(trt ) ph / resample seed = 46163  ; 

run; 

title4 ' '; 

title5 ' '; 

ods graphics off; 

ods html close; 
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Standardized Score Processes for three covariates by Survival 
Time 
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Standardized Score Process 

• PH statistic is sensitive to alternatives for which covariates have a 
monotonically increasing or decreasing effect over time 

• Lin (1993) showed this PH statistic is consistent against non-proportional 
hazards 

       Supremum Test for Proportionals Hazards Assumption 

  

             Maximum 

            Absolute                                      Pr >  

Variable       Value    Replications          Seed    MaxAbsVal 

trt           5.3397            1000         46163       <.0001 

x1            1.2089            1000         46163       0.1530 

x2            1.2693            1000         46163       0.1750 

Therneau 1990 
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Supremum Test for Proportional Hazards Assumption  

Variable Maximum 

Absolute 

Value 

Replications Seed Pr > 

MaxAbsValue 

fin 0.5423 1000 974156000 0.972 

age 1.8135 1000 974156000 0.441 

race 0.9424 1000 974156000 0.749 

wexp 1.3007 1000 974156000 0.641 

mar 0.9368 1000 974156000 0.781 

paro 0.5385 1000 974156000 0.975 

prio 0.6172 1000 974156000 0.943 
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Schoenfeld Partial Residuals Test 

• Harrell (1986) developed simple test 

• Based on Fisher’s z-transform of Pearson’s correlation between 
– The partial residuals and 

– Rank order of time 

 

• This test statistic tends to be positive if the ratio of the hazards for high values 
of the covariate increases over time 

• Otherwise, it is negative if the hazard ratio decreases over time  

 

• Easily calculated in a data step, and not available in the PHREG procedure 

 

)1/()2( 2  unz



Copyright® 2012 mgw 

Covariate by Time Interaction 

• Cox (1972) proposed adding a time-dependent interaction variable to the 
model and test its significance. 

• The Partial Likelihood Function has the same form with and woithout 
these time-dependent variables 

 

 

 

 

– where, gi(t) is some non-zero function of time 

– The hazard ratio is constant for all t only when γi=0. 
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Covariate by Time Interaction 
 

• To test the null hypothesis that γ=0 compute the likelihood ratio test 

 

 

 

 

• The creation of this interaction with time is complex data manipulation 
because that value changes.  

• The PHREG procedure is exceptional for creating these variables because it 
provides a rich subset of DATA step operators and functions 
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Covariate by Time Interaction 

*** nph06s01 ***; 

proc phreg data = ads01; 

     model survtime*event(0) = x1 x2 x3 trt trttime             

     / ties = efron; 

     trttime = trt*logsurvtime; 

     run; 
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Covariate by Time Interaction 
for Crossing Hazards (Case 6) 

   Output Appendix 2. 

   Table 8. 

                                        Analysis of Maximum Likelihood Estimates 

  

                                      Parameter      Standard                                  Hazard 

                   Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq       Ratio 

                   x1           1      -0.80131       0.01273     3962.2248        <.0001       0.449 

                   x2           1       1.61956       0.01625     9935.5621        <.0001       5.051 

                   x3           1       0.01907       0.01099        3.0130        0.0826       1.019 

                   trt          1       0.11559       0.02313       24.9682        <.0001       1.123 

                   x1time       1      -0.00327       0.00244        1.7974        0.1800       0.997 

    

 

   Output Appendix 3. 

   Table 9. 

                                        Analysis of Maximum Likelihood Estimates 

  

                                      Parameter      Standard                                  Hazard 

                   Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq       Ratio 

                   x1           1      -0.90746       0.01236     5388.3594        <.0001       0.404 

                   x2           1       1.80893       0.01735    10868.2407        <.0001       6.104 

                   x3           1       0.08778       0.01018       74.3177        <.0001       1.092 

                   trt          1      -0.54525       0.02627      430.7541        <.0001       0.580 

                   trttime      1       0.60965       0.01208     2549.0946        <.0001       1.840 
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Categorical Interaction 

*** nph06s01 ***; 

proc rank data = ads01 out = ads04 group = 5; 

     var survtime; 

     ranks rsurvtime;      

     run; 

 

title4 'Test of Interaction between trt and time using Dummy Variables'; 

proc phreg data = ads04;   

     model survtime*event(0) = x1 x2 x3  

           trttime0 trttime1 trttime2 

           trttime3 trttime4 

           / ties = efron; 

     trttime0 = trt * rsurvtime_0; 

     trttime1 = trt * rsurvtime_1; 

     trttime2 = trt * rsurvtime_2; 

     trttime3 = trt * rsurvtime_3; 

     trttime4 = trt * rsurvtime_4; 

     run; 

• Interaction effect might not be linear, so categorize the time-dependent variable: 

 

 

 

 

 

 

 

 

 

 

 

 

• Number of intervals should be  
– subject-matter based 

– Relatively equal number of events and censored observations  

– to be keep standard errors similar 
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Categorical Interaction 

Output Appendix 4. 

Table 11. 

                      Analysis of Maximum Likelihood Estimates 

  

                    Parameter      Standard                                  Hazard 

 Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq       Ratio 

 x1           1      -0.85988       0.01307     4327.4703        <.0001       0.423 

 x2           1       1.72533       0.01952     7811.5800        <.0001       5.614 

 x3           1       0.02681       0.01075        6.2132        0.0127       1.027 

 trttime0     1      -0.21911       0.06389       11.7617        0.0006       0.803 

 trttime1     1      -0.11454       0.04248        7.2682        0.0070       0.892 

 trttime2     1      -0.03552       0.03583        0.9824        0.3216       0.965 

 trttime3     1       0.10308       0.03430        9.0299        0.0027       1.109 

 trttime4     1       0.58883       0.04436      176.1789        <.0001       1.802 
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Comparisons of PH Test Performance 

• Ng’andu (1997) showed that the test statistics 

– The Score Process test 

– The Schoenfeld Partial Residuals test 

– Covariate by time interaction test 

• Are practically equally powerful 

• The Test for Continuous Interaction with time has the 
advantage of its simplicity 
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Modeling Non-Proportionality 

                  Output Appendix 3. 

                  Table 9. 

                                        Analysis of Maximum Likelihood Estimates 

  

                                      Parameter      Standard                                  Hazard 

                   Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq       Ratio 

                   x1           1      -0.90746       0.01236     5388.3594        <.0001       0.404 

                   x2           1       1.80893       0.01735    10868.2407        <.0001       6.104 

                   x3           1       0.08778       0.01018       74.3177        <.0001       1.092 

                   trt          1      -0.54525       0.02627      430.7541        <.0001       0.580 

                   trttime      1       0.60965       0.01208     2549.0946        <.0001       1.840 

                                        Analysis of Maximum Likelihood Estimates 

  

                                      Parameter      Standard                                  Hazard 

                   Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq       Ratio 

                   x1           1      -0.75099       0.01258     3563.9049        <.0001       0.472 

                   x2           1       1.53452       0.01705     8100.7074        <.0001       4.639 

                   x3           1      -0.01535       0.01178        1.6977        0.1926       0.985 

                   trt          1      -0.00532       0.02256        0.0556        0.8136       0.995 

• Superior Estimates of the time-dependent covariate 

• Improved Precision for the other covariates in the model 
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Stratification 

• Stratification allows the baseline hazard function to vary across strata 

• When the covariate which is non-proportional  

– Is categorical 

– Not of direct interest  

– Too difficult to model (functional form) 

• Limited method  

– Cannot include a variable as a covariate and as a stratification 

– Stratified PH models are used when the stratification variables are known to 
affect the outcome but the estimates of the effects are considered to be of 
secondary importance (Hosmer and Lemeshow 1999)   
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Stratified Models 

• hi (t;x) = hoi(t)exp{β1x1+. . .+ βkxk} 

• Creates a different baseline hazard for each stratum, but the 
same covariate estimates 

 

 

 

 

 

 

• Male and females have a non-PH relationship 

• The treatment effect is PH within both males and females 

• The hazard ratio is the same in both groups 
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Stratified Models 

• SAS Code 
proc phreg data = recid;  

     model week*arrest(0) = fin / ties = exact; 

     strata agecat; 

     run; 

• In the strata statement you can have more than one covariate but it must 
be categorical or categorized like age above 

• Or use the flexibility of the strata statement 
  strata age (10 to 30 by 10); 

• A separate strata is created from each combination  

• There are four strata with 2 bi-level variables 
   strata sex fin;  

• If you over-stratify, you lose power and information 
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Stratified Models with Interaction 

• In the regular stratified model, there are different hazard functions in each 
stratum, but the same hazard ratios for the covariates 

• You might suspect that a covariate effect differs over a strata 

• If so, add an interaction term for strata and covariate to the stratified 
model 

• SAS Code 
proc phreg data = recid;  

     model week*arrest(0) = fin fin*race;  

     strata race; 

     run; 

• This model is equivalent to fitting separate models for each level of race 
with “fin” as the only covariate 

• Test the Interaction coefficient if determine if “fin” is different for race. 
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Stratification vs. Time*Covariate Interactions 

• Time x Covariate Interaction 

– Must choose form of time dependency, e.g. x*t vs. x*log(t) 

– The parameter estimate, β2, is easily interpretable for clients 

• Stratification 

– Takes less computational time 

– Models any non-PH relationship; no need to choose form 

– No inference is possible for the stratification variable 

• Only makes sense for “nuisance variables” 

– You cannot stratify by a variable and also include it as a covariate 

– Can be useful in modeling clustered data. Use a different strata for each 
cluster 
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Principles in Survival Analysis 

• Plot your data  

• Plot your survivor function 

• Identify outliers 

• Check for Missing Values 

• Check for Informative Censoring 

• Examine proportional hazards assumption 

• Evaluate the functional form of covariates 

• Cautiously interpret tests and confidence intervals 


