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The Nature of Duration Data

e |s structured as the time to some well-defined endpoint event

* Economic Duration data measure the time to some event.
— Unemployment benefits stop
— Mutual Fund fails
— Recession ends
— Length of a Union Strike
* Medical Duration Data is often called Survival Data
— Time to Death (Survival)
— Time to an Adverse Event
— Time to Tumor Remission
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Disadvantage of Duration Data
is that it is difficult to analyze
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QQ Plots Show Non-normality
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Outline of Selected
Analysis Methods for Duration Curves

e The Product-Limit Method
e Accelerated Failure Time Models
* Proportional Hazards Regression
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The Survival (Duration) Distribution

Survival Probability
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S(t) is the probability that an event
time is greater than or equal to t,
where t can be any non-negative
number.

S(t)=P[T>2t]=1-P[T<t]

=1—F(t)
S(0)=1.0
S(ee) = 0.0
S(255) = 0.5
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The Probability Density Function

The probability density function (pdf) is the first derivative of the
cdf, F(y)

— Slope of the cdf and the negative slope of Survival
— d/dt [F(y)] = d/dt [ 1- S(y)] = -d/dt[S(y)]
Probability of failure over a very small time interval

f(y) = AI)I/LnO P(a subject fails betweenyand y + Ay)/ Ay
f(y) =Aljino P(y<Y <y+Ay)/ Ay

The probability density function is an unconditional probability
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Hazard Function

* The hazard function is a conditional density

* The probability that a subject fails over the next instant conditioned that
the subject has survived up to the beginning of the interval.

h(y) = AI)l/r%no P (a subject fails
between y and Ay |
the subject survives to y) /
AY.
= 1lim P(y <Y = y+ AyY|lY >Vy)/ Ay

Ay—>0

f(y)
1 - F(y)
f(y)
S(y)
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The Hazard Function is Central to Describing the Probability
Distributions of Duration Data

Hazard Function: A(t)

/" O\

PDF: f(t) Survival Curve: S(t)

\.. 7~

CDF: F(t)
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Selected Simple Hazard Families

Hazard Form of Log Log Hazard Family
Hazard
h(t) = A Constant log h(t) = Exponential
h(t) = Ayt Linear log h(t) = u + at Gompertz
h(t) = At® Log Linear log h(t) = y+ alog(t) Weibull
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Gompertz Hazard

Gompertz Family of Hazard Densities
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* Unlike the Weibull, the Gompertz intercept is lambda, which in
some situations is more realistic than zero or infinity

 Gompertz is not readily available in SAS
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Proportional Hazard Functions

The Exponential, Weibull and Gompertz models are all
members of a general class known as proportional
hazards models.

Two hazard functions h,(y) and h,(y) are said to be
proportional iff:

h,(y) = A h,(y), forally >0,
where A is constant.
It can be shown, S,(y) = [S,(y)] *
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Product-Limit Estimates

* Formally the Product Limit nonparametric estimation of the
survival function at time y is given by:

( d\
S(y)= [ 11—

Y(k)<y\ Iy /

 Multiply together a series of conditional probabilities
* Nonparametric
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Computing the Product Limit Estimates

* In SAS, only a PROC LIFETEST and TIME statements are required:

proc lifetest;
time months;

run;
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Product-Limit Large Sample Confidence Intervals

:S(Ay):

J_rz(a/Z)\/var

:S(Ay):
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Empirical Survival Distribution is a
Step Function of PL Estimates

Survival Probability

Product-Limit Survival Function Estimate
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Empirical Hazard Function for Mutual Fund Example

Hazard Function Estimate
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Use the LT option to get hazard plots.
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Experimental Cancer Treatment Study

Consider the results of a small randomized cancer trial.

40 cases have been randomly assigned to two treatment groups
— Experimental Drug + Standard
— Standard Therapy Only

The response is the time from randomization to death.

Interested in whether the survival distributions differ between the two
treatments.

The data set Exposed contains four variables:

DAYS Follow-up time from randomization to death

STATUS Event indicator with value 1 for death time and value O for
censored time

TREATMENT Treatment indicator, 1 if experimental, O if standard

SEX M and F
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Experimental Cancer Treatment Results

Experimental Standard
Days Sex Days Sex
179 F 237% F
256 F 156 F
262 M 270 M
256 F 257 M
255 M 242 M
224% F 157 F
225 F 249 M
287 M 180 F
319 M 226 F
264 M 268%* M
378% M 291 M
355 M 323 M
319 M 253 M
256 M 206 F
171 F 206 F
325 M 237 M
325 M 211 F
217 F 229 F
255 F 234 F
256 F 209 F

Mean = 269.2 Mean = 232.5
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Types of Censoring

Directional Right Study stopped before the event occurs
Left Event occurred before the study started
Interval Event occurs between visits,a<T<Db
Fixed Type | Under the control of the investigator
When the study conclusion is scheduled;
Fixed censoring time
Type | Fixed number of events to occur
50 patients out of 100 have an event
Single One censoring time
Multiple If two or more censoring times
e.g. 3 and 5 years
Random Lost to Follow-up; competing risk

These occur before the fixed censoring

Non-informative

Those censored at time, t, should be representative of all
subjects with the same covariates, still alive at t

None of the covariates predict censoring

Informative

Censoring mechanism and Event related
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Patient

Censoring Pattern in Calendar Time
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Non-Informative Censoring

e All standard Survival Analysis Methods assume that censoring is random
and non-informative

— Those censored at time, t, should be representative of all subjects with the
same covariates, still alive at t (Cox and Oakes, 1984)

— In most situations adding entry time as a covariate in the model will help to
adjust for the dependency

* The non-informative assumption cannot be checked by any statistical test

— A crude sensitivity test is offered by assuming best and worst case scenarios
(Allison, chapter 8)

— Otherwise,
* Do everything you can to reduce drop-out censoring
* Measure covariates likely to affect censoring
e Cautiously interpret tests and confidence intervals

* There are no SAS procedures for Informative Censoring
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PL Estimates with Non-Informative Right Censoring

e Censored data are paired Time to Occurrence
— In this example, the time variable is DAYS and
— the censoring variable is STATUS
— With value 0 indicating censored observations
e Data for the time to occurrence of a pre-defined event obtained from n
subjects of a clinical trial can be arranged as (y,,c,),...,(y,,,C,,)
— where vy, is the observed time for subject i, and,

1, if y, Is the survival time,
C. = : :
' O, iIfy. Iscensored.

* The following statements compute the product-limit estimate for the

censored data:

proc lifetest;
time days*status(0);
run;
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Survival Function for Experimental Cancer Treatment Data

Product-Limit Survival Function Estimate
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Comparison between Survival Functions

In the Experiment Cancer Treatment Study, we’re interested
in whether the survival distributions differ between the two
treatments.

The statistical hypotheses to determine whether the
experimental therapy can improve survival probability
compared to standard treatment are typically expressed as:

NullH,: S; =S, versus
Alternative H.: S;#S,
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Comparison between Survival Functions

One commonly used method for comparing two survival functions is the
log-rank test.

The log-rank test is known to be the most powerful test for the alternative
hypothesis that hazard function are proportional.

Null H,: S;(y) = S,(y) versus
Alternative H._: S,(y) = [S,(y)]*

The log-rank test for comparing two independent samples is the same as
the Mantel-Haenszel statistic for combining results from different strata.

Under the assumption of hypergeometric distribution, the conditional
expected number of patients with occurrence of events for d,, at the
event time y,, for the test drug is given by:

_ Ny dy
Ny

elk
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Comparing Survival Curves

In the Experiment Cancer Treatment Study, we’re interested in whether
the survival distributions differ between the two treatments

proc lifetest;
time Days*Status (0);
strata Treatment;

run,
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Comparison between Survival Functions

Test of Equality over Strata

Test Chi-Square
Log-Rank 5.6485
Wilcoxon 5.0312
-2Log (LR) 0.1983

DF

Pr >
Chi-Square
0.0175
0.0249
0.6561
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PL Estimates for Experimental Cancer Study

Survival Probability

Product-Limit Survival Function Estimates

' Experimental
------------ Standard
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Comparison between Survival Functions

* The log-rank statistic is the same as the Mantel-Haenszel:

<< >
k% 1(d1k — 3K
> — —
LR <<
rank statistic

 Under the nuII hyFothe5|s of e?ual survival fUEOM,ith:e Iog_L
approximately follows a central chi-squarejdisteibutjon with1 degree of freedom

when sample'size is moderate.
Hence, the null hypothesis is rejected at the ath significance level if:

XLR > Xz(all)
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Stratified Log-Rank Tests

We also plotted the survival curves by gender

A separation in survival curves was observed

Survival Probability

Product-Limit Survival Function Estimates

0.8+
0.6+
+
0.4+
0.2+
+
0- Logranl p
T T T T T
0 100 200 300 400
Days
Mo, of Subjects  Event  Censored Median Survival (95% CL)
F 20 90% (18) 10% (2) 221.0 (206.0 234.0)
I 20 90% (18) 10% (2) 2700 (256.0 319.0)

So we wanted to test the effect of treatment stratified for gender
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Tests for Treatment Effect Adjusting for Gender

e SAS Code

proc lifetest;
time Days*Status (0);
strata sex / group =
run;

Treatment;

* SAS Output

Stratified Test of Equality over Group

Pr >
Test Chi-Square DF Chi-Square
Log-Rank 7.2466 1 0.0071

Wilcoxon 5.9179 1 0.0150
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Outline of Selected
Analysis Methods for Duration Curves

e Accelerated Failure Time Models
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Accelerated Failure Time Models

Models

— The estimates of parametric regression
* Weibull
* Exponential
* Log-Normal

— for censored survival data
— Uses the method of Maximum likelihood

S(t) = S(®;;t), for all t
Advantages
— Accommodates left and interval censoring

— Test shape of the hazard function
— More efficient (smaller standard errors)

Parametric methods for estimation of survival time can be

foundin
— Lee (1992) and
— Marubini and Valsecchi (1995)
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Recidivism Dataset

N =432 inmates from Maryland Penitentiary
Censoring Time = 1 year

Dates of arrest recorded

Does parole lengthen the time to next arrest?
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Fitting AFT Models

e SAS Code

proc lifereg data = recid02;
class educO1;
model week*arrest (0)=fin age race wexp mar paro prio
educ01 / dist = weibull covb;

run,

— Class statement creates indicator variables for polytomous covariates

— Rich array of survival distributions including the
e generalized gamma distribution

Copyright® 2012 mgw



Recidivism Model with Education as a CLASS Variable

Parameter
Intercept
fin

age

race

wexp

mar

paro

prio
educO01
educO01
educO01

NN

Analysis of Parameter Estimates

DF Estimate

1

N e e e

.4680
.2690
.0392
.2524
.0773
.3013
.0658
.0585
.5116
.3536
.0000

Standard

O O O OO OO o oo

Error
.5171
.1379
.0159
L2229
.1522
.2732
.1396
.0213
.3090
.3243

95% Confidence
Limits
3.4544 5.4816
-0.0012 0.5392
0.0079 0.0705
-0.6893 0.1845
-0.2209 0.3755
-0.2342 0.8368
-0.2078 0.3394
-0.1004 -0.0167
-1.1172 0.0941
-0.9892 0.2819

Chi-
Square

74.
.81

65

6.04

PN JORr O

.28
.26
.22
.22
.53
.74
.19

Pr > ChiSqg

ocNeoNoNeolNelNo oo\

.0001
.0510
.0140
.2575
.6114
.2701
.6374
.0061
.0978
.27755
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Outline of Selected
Analysis Methods for Duration Curves

* Proportional Hazards Regression
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Primary Biliary Cirrhosis Dataset

In their 1991 book, Fleming and Harrington published a survival analysis dataset

from the Mayo clinic involving primary biliary cirrhosis. The Mayo PBC Model

published by Dickson (1989) has been extremely important in liver disease research
The data consist of 418 patients among which 161 had died

A subset of variables are:

TIME Follow-up time, in years

STATUS Event indicator with value 1 for death time and
value O for censored time

AGE Age in years from birth to study registration

ALBUMIN Serum albumin level in gm/dI

BILIRUBIN Serum bilirubin level in mg/dl

EDEMA Edema presence, ordinal 0.0, 0.5, 1.0

PROTIME Prothrombin time in seconds
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Proportional Hazards Regression
Model Specification

* h(t;x) = ho(t) exp{Box,*. . .+ Bxi}
* where:

— h(t;x) is the hazard function at time t for a subject with
covariates values X,. . .,X,

— h,(t) is the baseline hazard function, that is, when all
covariates equal zero

— exp is the exponential function: exp(x)=e*
— X;is the it" covariate in the model and
— B, is the regression coefficient for the i™" covariate x;
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Proportional Hazards Regression
Remarks

h(t;x) = hy(t) exp{B X +. . .+ BXy}

Proportional hazards regression predicts the hazard
function, not ‘Y’ as in ordinary regression

Baseline hazard, N (t), can take any functional form
with a positive value

The exponential function of the covariates will be
positive

The model is multiplicative. There is no intercept; it is
absorbed into the baseline function

The log-transform model is additive.
— In[h(tx)] = In[hy(®] + {Byxy+. . + Bxi}
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Gompertz Hazard

5.0 g

Weibull Family

Examples of Baseline Hazards h(t)
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Partial Likelihood

Coh) (8) LA+ %)
=1 s ™ L Sth @ entm s g

JeR JeR

Where
— t is the it" death time,
— X; are the covariates,
— Riis the risk set at time t, (i.e. still alive and uncensored)

The numerator is the hazard of death for the subject who died at time t,

The denominator is the sum of hazards of death for all subjects in the risk
set attime t,

The ratio reflects the likelihood of death for subject i
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Partial Likelihood Estimation
of the PH Model

- 11 _ht) - 11 N () eXpLoX +...+ Pk
icevents Zh(t ) icevents ZhO(tj)em{ﬂ(l_'—"'_l_@(k}

JeR; JER,

The likelihood function can be factored into two parts: the dependent on
ho('[) and the part dependent on the betas, B, . . . , Py

Partial likelihood uses only the betas, Bl, Ce Bk, ignoring the baseline
hazard function, h(t).

Some information is lost, so the standard errors are slightly increased

Because the form of the baseline hazard function, ho('[), is not specified
some robustness in the betas, B, . . . , By, is gained

The estimates of the betas, Bl, Ce Bk , are still, asymptotically unbiased
(consistent) and asymptotically normally distributed
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Method of Partial Likelihood Estimation

oIn(PL) _

In (PL) 0
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Simple PL Example
One Covariate, Five Observations

L h) o h)ep{i)
L= 1 s Ll Shoening

jERi jERi
s 1 X
X : Event
Sex=1 24 ® : Censore d
S 3 X
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One Dichotomous Covariate, Five Observations

Sex =
Sex =
Sex =
Sex =

Sex =

PL

1

1

1

2-

Simple PL Example

X
X : Event
' @ : Censored
—x
3 X
‘ ' time
=0 t, { ¢
1 1 0
'’ '’ e’

— X X
e’ e’ +e% 1% ¥ 1e% 1% Y

This example shows a special case.

If =0, PL= 1/4x1/3x1

PL increases as 3 increases

The value of B that maximizes the PL is positive infinity
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Simple PL Example
One Continuous Covariate, Five Observations

age=79 1 X

X : Event
age=47 2 4 ® : Censored
age=52 3 K
age=63 4
age=43 5 A WK

T time !
t=0
o9 528 438

PL = X X
o7 | @52/ | o838 | o%38 " o526 | o838 | o438 T o435

* This example shows a second special case.

* Death occurs in order, so PL increases as 3 increases

* The value of B that maximizes the PL is positive infinity

* The term for the last death equals 1 and will not contribute to the PL.
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Time Scale for Partial Likelihood

PL only uses the ranks of time values
Actual time is not used

Years, Months and Weeks do not matter
Log(Week) vs. Week does not matter

Later we will see that for some time-dependent covariates (time*covariate
interactions), the choice of time scale does matters
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Methods for Tied Event Times in Partial Likelihood

Exact

— Best

— Computationally intensive
Discrete

— Exact

— Proportional Odds not Proportional Hazards
Efron

— Best of approximations

— Splus default
Breslow

— Worst approximation

— SAS Default

— Only available method in SPSS

If no ties methods give identical results
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Possible Remedial Measures for Issues in PH Modeling

1
2
3
4

Outliers and Influential Observations PH Influence Statistics

Interaction among Covariates Martingale Plots

Incorrect Functional Form Cumulative Residual Plots

Covariate excluded wrongly Refit model with covariate
included

Covariate modeled incorrectly Fit non-linear term (e.g. squared

(e.g. nonlinear effect) term)

Quasi-complete separation Firths Penalized Likelihood
Maximum

Correlated Responses Quasi-likelihood estimation of the
Sandwich Variance

Non-PH ?

Wilson (2008).
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h(t,x)

When Hazards are Proportional

h(t) =y -h, (1)

\v///\/\

t

Hazard functions for two different levels of a covariate are
proportional for all values of t

For example, if men have twice the risk of myocardial
infarction compared to women at age 40, the risk is twice
at age 60

The baseline function for age can have any form

The estimates of the betas are consistent (i.e.
asymptotically unbiased) and asymptotically normally
distributed.

How do you know?
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Hazard Ratio from PH Regression

* The hazard ratio for two individuals with a different covariate, like gender

h(tx=1)  hy(t)exp{p(x,=1)}

h(t:x=0)  hy(t)exp{p(x,=0)}

HR (Gender) =

exp{B(x,;=1 - x,=0)} = eP

* Notice how the baseline hazard function, ho(t), cancels out because it is the
same at all time points, t.
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Coding Categorical Variables with Missing Values

Get into the habit of coding for missing values routinely

if edema = . then do;

MildED = .;
SevED = .;
end;

else if edema = 0.0 then do;
MildED = 0;
SevED = 0;
end;

else 1if edema = 0.5 then do;
MildED = 1;
SevED = 0;
end;

else if edema = 1.0 then do;
MildED = 0;
SevED = 1;
end;

Include the Indicator variables in the model statement

proc phreg data = liver02;
model Time*Status(0) = sex age MildED SevED;
run;
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The PHREG Procedure
Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 1740.013 1505.341
AIC 1740.013 1517.341
SBC 1740.013 1535.829

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSqg
Likelihood Ratio 234.6717 6 <.0001
Score 329.2670 6 <.0001
Wald 240.7266 6 <.0001
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Variable
logBili
logProtime
logAlbumin
Age

MildED
SevED

DF

e

Introduction to Survival Analysis

The PHREG Procedure
Analysis of Maximum Likelihood Estimates

Parameter Standard

Estimate Error Chi-Square Pr > ChiSg
0.86715 0.08291 109.3945 <.0001
2.35341 0.77093 9.3189 0.0023
-2.55101 0.64818 15.4893 <.0001
0.04019 0.00768 27.3524 <.0001
0.27028 0.22495 1.4437 0.2295
0.97348 0.28943 11.3126 0.0008

Linear Hypotheses Testing Results

Wald
Label Chi-Square DF Pr > ChiSg
testl 4.7467 1 0.0294

Hazard
Ratio

2
10

N e

.380
.521
0.
.041
.310
. 647

078
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Survivor Function for PBC Dataset

Survival Probability

Product-Limit Survival Function Estimate

0.8+

0.6+

0.4+

0.2+

T T T T
24 5 7.5 10

Follow-up Time in Years

Mo, of Subjects Ewvent Censzored Median Sumvival (95% CL)
4148 39% (161) G1% (257) 5930 ( 8.46 10.681)
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Polytomous Parameters Estimates

The coefficient for MildED reflects the difference between Mild Edema
and the reference group (Edema = none)

— B <0: lower death risk for Mild than No Edema
— B> 0: higher death risk for Mild than No Edema

The coefficient for SevED reflects the difference between Severe Edema
and the reference group (Edema = none)

— B <0: lower death risk for Severe than No Edema
— B> 0: higher death risk for Severe than No Edema

Additionally, a comparison between Mild vs. Severe might be interesting

— Mild vs. Severe is the difference between (Mild vs. None) and (Severe vs.
None)

— Use the Test statement
— Could get all pairwise comparisons
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Measure of Explained Variation

In ordinary regression, R = proportion of variation explained by the
model.

For likelihood-based procedures, we use the Generalized R?
— =1-—exp{-(2/n) (LL(B) — LL(0))},
* where LL = Log Likelihood
— =1-exp{-X?/n},
* where X2= LR test statistic
For PH model, perfect fit implies LL(B) = O.
So a maximum possible Generalized R?= 1 — exp{-(2/n) LL(0)}
If n is large the Generalized R?is approximately 1
For PBC data,
— Generalized R?=1 - exp{-234.6/418} = 0.43
— Maximum possible Generalized R>=1 — exp{-1740.0/418} = 0.98
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Liver Cirrhosis Treatment Study

Randomized clinical trial at Mayo
Survival of patients with liver cirrhosis (NEJM 306:319-326)
Compare a new treatment, D-penicillamine with placebo

Data collected at randomization
— Presence/absence of ascites
— Prothrombin time in seconds -10
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Proportional Hazards Model Results

h(t) = hy(t) exp{ -0.135 X;p+1.737 X,+0.346 X,}
— Xz 1 = D-penicillamine, 0 = placebo
— X,: 1=ascites, 0 =no ascites
— Xp:  Prothrombin time — 10 (Continuous variable, units in seconds)

ho(t) is the event rate at time t in the placebo arm for subjects without
ascites with a prothrombin time of 10 seconds

Hazard rate of death two years post randomization for a subject on this
trial who received the new treatment, had ascites at randomization and a
prothrombin time of 10 seconds compared to a similar subject who
received placebo?

RR=exp {-0.135}=0.87
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Hazard Rate Calculations

A(t) = A, () exp{-0.135 X +1.737 X, +0.346 X}

Aoerso () A5 (t) exp{-0.135 *1+1.737*1+0.346 *0}
Aoersona (1) Ao () €xp{-0.135 *0+1.737 *1+0.346 *0}

—-0.135 1.737 0
e *e *e

eO *el.737 * eO

exp{—0.135} = 0.87 s the relative rate of death for
subjects who received treatment compared to those

who received placebo
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Dichotomous Covariate Interactions

* h(t;x) = hy()exp{Bx;+ BX,+ PaX X, }

——Trt A, Males

T Fomaes ?\/\
T~
N

——Trt B, Females

log h(t;x)
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log h(t;x)

/)

Dichotomous Covariate Interactions

* h(t;x) = hy(D)exp{Bx;+ BoXot BsX X}

x1 x2 h(t;x)

—Tit A, Males Trt A, Males 0 1 hoO(t) e{p2}
——Trt B, Males

Trt A, Females /\ Trt B, Males 1 1 hO(t) e{B1+p2+ B3}
——Trt B, Females /\

\/\ Trt A, Females 0 0 hO(t)

Trt B, Females 1 0 hO(t) e{B1}

Modified from Marubini and Valsecchi
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Dichotomous Covariate Interactions

Because the baseline hazard function hy(t) is not estimated the previous
plot is hypothetical and cannot be created

Therefore, we have two options to present interactions:
First, present separate hazard ratios by level of covariate

For example, Let B, = -0.6 (trt) B, = 1.4 (gender) B; = -0.4 (intx)

Males: HR (Trt B vs. Trt A) = exp(B, + B3) = exp(-0.6 — 0.4)

=exp(-1)=0.4
Females: HR (Trt B vs. Trt A) = exp(p,) = exp(-0.6)
= exp(-0.6) = 0.6

Trt B is better than A, but larger effect in males
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Dichotomous Covariate Interactions

Secondly, plot the hazard ratios in

comparison to the reference group Trt HR  h(tx)
The reference group for this example males A 4.0 e{B2}
is Females on Treatment A B 15 e{B1+p2+ B3}
Females A 1.0 e{l}
B 0.6 9{81}

HR

——Trt A
—8—Trt B
14 l\.

males females
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Continuous Covariate Interactions

* Continuous-by-Categorical Interaction

— Plot the HR by the continuous covariate with separate line for the levels of the
categorical covariate

e Continuous-by-Continuous Interaction

— Plot the HR by one of the continuous covariates, with separate lines for
selected values of the other covariate
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Checks on the Proportional Hazards Assumption

* Graphical
— Log Cumulative Hazard
— Schoenfeld Partial Residuals
— Standardized Score Process

* Analytical
— Standardized Score Process
— Schoenfeld Partial Residuals

— Covariate by Time Interaction
* Continuous
* Categorical
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Log Cumulative Hazard

If the hazards are proportional: hl(t) =7- h2 (t)

it can be shown that:
log [~ log5,;(2)] = logy + log [—log 5,(t)]

We recognize —log(S(t)) as the cumulative hazard function, H(t)

So this relationship implies that the Log Cumulative Hazard for the two
groups differs by a constant.

Plots of the log cumulative hazard would be parallel

Departures from parallelism would be consistent with violations of the PH
assumption.
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Synthetic, Censored Time-to-Event Datasets

* Clinical Trial Format for Acute Coronary Syndrome
* A subset of variables are:

TIME Follow-up time, in years

STATUS Event indicator with value 1 for death time and value O
for censored time

TREATMENT Dichotomous Treatment Variable

AGE Age in years continuous

TROPININ Diagnostic Cardiac Tropinin-T (cTnT; in pg/L)

Failure times generated from Weibull hazard:
h(t) = hy(At)v*

Melanson 2007
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Weibull Parameter Values for Six Hazard Patterns

Control Group

Investigational Group

Case Hazards Pattern Shape (o) Scale (y) Shape (A) Scale (y)
1 Constant (1) 2.00 2.00 2.00 2.00
2 Constant (2) 1.00 1.00 1.00 2.00
3 Decreasing 0.30 2.00 0.50 2.00
4 Increasing 1.50 2.00 2.00 2.00
5 Diverging 0.75 1.00 2.00 1.00
6 Crossing 1.50 1.00 3.00 1.00

Adapted from Ng’andu 1997
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Six Patterns of Hazard Functions by Time

E.D - 2.{] N 2.':' -
1.5 - 1.5 1.5 -
1.0 - 1.0 - 1.0 - Decreasing
0.5 Null Hypothesis 0.5 - Alternative Hypothesis 0.5
D-D T T T T D-I:I T T T T {]-D T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
18.0 - A0 - 15.0 -
10 12.0
12.0 A =
2.0
2.0 -
6.0 - Diverging 6.0
: 1.0 4 3.0
Increasing .
0.0 T T T T 0.0 T T T T 0.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

The control groups are shown in red while investigational groups are shown in blue.
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Ordinarily Generated Graphs for PH

* Histograms with distributions
e Survival Curves

* Hazard Curves

e Cumulative Hazard Curves
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Generate Histograms

$let pctlist = 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 ;

footnoteb 'Normal = Black, LogNormal = Red, Exponential = Orange,
Weibull = Blue, Gamma = Yellow';
ods trace on;
ods output GoodnessOfFit = gof0l FitQuantiles = fgOl
ParameterEstimates = pel0l;
proc univariate data=plotdata pctldef=5;
var survtime;

histogram / normal (1=3 color=black percents = &pctlist)
lognormal (theta = 0 zeta = est sigma = est 1=1
color=red percents = &pctlist)
exponential (theta = est sigma = est 1=4
color=orange percents = &pctlist)
weibull (theta = est sigma = est 1=2
color=blue percents = &pctlist)
gamma (theta = est sigma = est 1=8
color=yellow percents = &pctlist)
cframe = ligr
vaxis = axisl
name = 'MyHist';
inset n mean(5.3) std='Std Dev' (5.3) skewness (5.3)
/ pos = ne header = 'Summary Statistics' cfill = ywh;
axisl label=(a=90 r=0);
run;

footnoteb ' ';
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Histograms of Time-to-Event Data

0 23 06 08 11 45 4B 4 24 7 3 33 35 3§ 43 L5 48
rme

Normal = Black; Lognormal = Red; Exponential = Orange; Weibull = Blue; Gamma= Yellow
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Generate Survival Curves

symboll value=none interpol=join color
symbol2 value=none interpol=join color
proc lifetest data = plotdata method =
intervals = 1 to 9 by 2;
strata trt;
time survtime;
run;

= red;
= blue;
life plots = (s)

graphics
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Six Patterns of Survival Functions by Time
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Generate Hazards

proc lifetest data = plotdata method = life plots = (h) graphics
intervals = 1 to 9 by 2;
strata trt;
time survtime;
run;
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Six Patterns of Hazard Functions by Time
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Cumulative Hazard Function

proc phreg data = plotdata;
model survtime*event (0) = x1 x2 x3 trt / ties = efron;
baseline out = out03 survival = s logsurv = 1ls loglogs = 1lls; run;

data out04;
set out03;
ls = -1s;
logsurvtime = log(survtime); run;

goptions reset=all ftext="arial" htext=1.5 hsize=11 in vsize=8 in
device=emf rotate=landscape gsfname=PlotOutd4d gsfmode=replace;
filename PlotOuté4 "%nrbquote (&projlib)sasout\&saspgmn. OGSAO4.emf";
symboll value=none interpol=join color = blue w=2 ;
axisl minor=none offset=(2,2) label=(a=90 h=1.6 'Log of Survival')
order=0 to 110 by 10 value=(h=1.5);
axis?2 minor=none offset=(2,2) label=(h=1.6 'Survival Time')
order=0 to 5 by .5 value=(h=1.5);

titled h=1.8 'Cumulative Hazard Function';

proc gplot data = out04;
plot ls*survtime = trt / vaxis = axisl haxis = axis2 nofr;
run;

Copyright® 2012 mgw



Six Patterns of the Cumulative Hazard Functions by Time
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Unadjusted Log Cumulative Hazard

goptions reset=all ftext="arial" htext=1.5 hsize=11 in vsize=8 in
device=emf rotate=landscape gsfname=PlotOutb gsfmode=replace;

filename PlotOut5 "%nrbquote (&projlib)sasout\&saspgmn. GCPHOl.emf";

symboll value=dot w=2 h
symbol?2 value=dot w=2 h

interpol=join color = red;

1
1 interpol=join color = blue;

titled 'Unadjusted Check for Treatment using the Log Neg Log Survival Plot';
proc lifetest data = plotdata method = life plots = (1lls) graphics

intervals = 0 to 5 by 0.5;

strata trt;

time survtime;

run;
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Six Patterns of the Unadjusted Log Cumulative Hazard Functions
by Log Time
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Adjusted Log Cumulative Hazard

titled 'Adjusted Check for Treatment using the Log Neg Log Survival Plot';
proc phreg data = plotdata;

model survtime*event (0) = x1 x2 x3 / ties = efron;
strata trt;
baseline out = outOl

survival = s

logsurv = 1s

loglogs = 1ls;

run;

data out02;

set outO01;

label logsurv = 'Negative Log of Survival';
if 1s = . then logsurv = .;

else logsurv = -1s;

if survtime = 0 then logsurvtime = .;

else logsurvtime = log(survtime);

run;
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Schoenfeld Partial Residuals

A
/\ —

lik = Xik — Xy

For each covariate in a PH regression, a Shoenfeld Partial Residual can be
calculated for each case that was not censored.

The residual is the difference between covariate value for an individual and a
weight mean of covariate values for all individuals.

Under proportional hazards, a plot of this residuals against time should be
approximately flat.
Note:

— These residuals are time independent and

— Baseline Hazard Function independent
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Schoenfeld Partial Residuals

titled 'Ordinary Cox Regression without Adjusting for Non-PH';
proc phreg data = adsO01;

model survtime*event (0) = x1 x2 x3 trt / ties = efron;
output out = out05
ressch = schxl schx?2 schx3 schtrt;

run;
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Schoenfeld Residuals for a Continuous Variable known to follow
the Proportional Hazards Assumption by Survival Time
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Schoenfeld Residual for Trt

Schoenfeld Residuals for a Categorical Variable under the Null
Hvpothesis bv Survival Time

Ordinary Cox Regression without Adjusting for Non-PH

0.6 -
0.5 MWNM.N"«IM Y
0.4 -
0.3 1
0.2 -
0.1 -
0.0 -
-0.1 -
-0.2 1
-0.3 1
-0.4 1

[ ot
-0.5 - W“””\M‘Ns oo

-0.6 -

Survival Time

Copyright® 2012 mgw



S b b B bl d Ta

e caatabd el i T

i

(2]
oF;
Lt
03,

(3

i

g
-0

Schoenfeld Residuals for a Categorical Variable under different
Proportional Hazards Assumptions by Survival Time

Credrary G Ragramion e Afeting tor hoa-Pe

Crdirmry Cox Ragesuskon w Bl Adping 1o For-Pel

iy Coe Regreasion aiload Sdunliag For Bor-PH

s as
R -
b—.—.‘- W_wq-‘ T3 an=
s r . r.u———
o3 as
[ az
z =
& oi & at
. x
i o }' an
3 0 at
1 3
B R
® os # s
™ A
.
of r.-n-— - anf=
e e
N—— - g Ry e, o velg et
o7 At
b ag ] ] a % 10 1 [ 5 [ w as 14 5 [ [ 34 38 i 4k ais an as 1 ] [ I8 b AE an as s
Swrikal Tire Swrvial Tims Sarevul Tirs
Cordrary Cox Bagramion v o Aguting b hoa-F1e Crdirmry Tox Ragowsion = 850 Sdpaing 1o Ror-PH Oy Cox Regrenson slaod Aot o for MorePol
et 0 ":' e i
0w as
o an
: oF ar
o8 as
of as
= baqs E oaal=
& s Foas
i o L
; ol I at
i as
T oo e re———— at
. T LT
o3 4%
™ A
. s
. a8
or ar
o8 a
e as 1o e o i 1 15 i 4% [ i as 1a 18 Ta 75 P 35 E 45 s aa a5 i 5 TB P 3 18 i Pl %

Copyright® 2012 mgw



Consider Adding a LOESS smoothing line through the Schoenfeld
Residuals

ods output ScoreResults = ScoreResults01;
proc loess data = phregout;
model resid = covariate;

SCOore,; runy
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Standardized Score Process

Martingale Residual Transform

— Martingale is a special sequence of random variables where the conditional
expected value of the next observation, given all the past observations, is
equal to the last observation

Tied down Brownian Process
— Start and end at zero

Paths (or process) under the null hypothesis is simulated
Atypical observed paths are evidence of violations of proportional hazards
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Standardized Score Process

titled4d h=1.8 'Standardized Score Process Plots to Assess the PH assumption';
titleb h=1.8 'Kolmogorov-type Supremum Test using the Assess statement';
proc phreg data = plotdatal2;

model survtime*event (0) = trt x1 x2 x3
/ ties = efron;
assess var=(trt ) ph / resample seed = 46163 ;
run;
titled ' ';
titleb " ';

ods graphics off;
ods html close;
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Standardized Score Processes for three covariates by Survival

Time
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Standardized Score Process

PH statistic is sensitive to alternatives for which covariates have a
monotonically increasing or decreasing effect over time

Lin (1993) showed this PH statistic is consistent against non-proportional
hazards

Supremum Test for Proportionals Hazards Assumption

Maximum
Absolute Pr >
Variable Value Replications Seed MaxAbsVal
trt 5.3397 1000 46163 <.0001
x1 1.2089 1000 46163 0.1530

X2 1.2693 1000 46163 0.1750

Therneau 1990

Copyright® 2012 mgw



Supremum Test for Proportional Hazards Assumption
Variable Maximum Replications Seed
Absolute MaxAbsValue
Value
fin 0.5423 1000 974156000 972
age 1.8135 1000 974156000 .441
race 0.9424 1000 974156000 . 749
wexp 1.3007 1000 974156000 .641
mar 0.9368 1000 974156000 .781
paro 0.5385 1000 974156000 .975
prio 0.6172 1000 974156000 . 943
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Schoenfeld Partial Residuals Test

2= py(n, —2) I(1- p°)

Harrell (1986) developed simple test

Based on Fisher’s z-transform of Pearson’s correlation between
— The partial residuals and
— Rank order of time

This test statistic tends to be positive if the ratio of the hazards for high values
of the covariate increases over time

Otherwise, it is negative if the hazard ratio decreases over time

Easily calculated in a data step, and not available in the PHREG procedure
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Covariate by Time Interaction

 Cox(1972) proposed adding a time-dependent interaction variable to the
model and test its significance.

 The Partial Likelihood Function has the same form with and woithout
these time-dependent variables

B

e
M(EX®) = he® exp! ¥ X+ ) viXigi©)

=1 =1

— where, g;(t) is some non-zero function of time
— The hazard ratio is constant for all t only when y,=0.
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Covariate by Time Interaction

To test the null hypothesis that y=0 compute the likelihood ratio test

The creation of this interaction with time is complex data manipulation
because that value changes.

The PHREG procedure is exceptional for creating these variables because it
provides a rich subset of DATA step operators and functions
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Covariate by Time Interaction

*+% nph06s01 ***;

proc phreg data = ads01;

model survtime*event (0) = x1 x2 x3 trt trttime
/ ties = efron;

trttime = trt*logsurvtime;

run;
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Output Appendix 2.

Table 8.

Output Appendix

Table 9.

Variable
x1

X2

X3

trt
x1ltime

Variable
x1

X2

X3

trt
trttime

Covariate by Time Interaction
for Crossing Hazards (Case 6)

DF

e el

DF

R e

Analysis of Maximum Likelihood Estimates

Parameter
Estimate
-0.80131

1.61956
0.01907
0.11559
-0.00327

Standard

Error
.01273
.01625
.01099
.02313
.00244

O O O O o

Analysis of Maximum Likelihood

Parameter
Estimate
-0.90746

1.80893
0.08778
-0.54525
0.60965

Standard

Error
.01236
.01735
.01018
.02627
.01208

O O O O o

Chi-Square Pr > ChiSqg
3962.2248 <.0001
9935.5621 <.0001

3.0130 0.0826

24.9682 <.0001

1.7974 0.1800
Estimates

Chi-Square Pr > ChiSqg
5388.3594 <.0001

10868.2407 <.0001

74.3177 <.0001
430.7541 <.0001
2549.0946 <.0001

Hazard
Ratio
0.449

.051

.019

.123

.997

O = = O

Hazard
Ratio
0.404

.104

.092

.580

.840

= O K O
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Categorical Interaction

* Interaction effect might not be linear, so categorize the time-dependent variable:

*** nph06s01 ***;

proc rank data = ads0l out = ads04 group = 5;
var survtime;
ranks rsurvtime;
run;

titled4d 'Test of Interaction between trt and time using Dummy Variables';
proc phreg data = ads04;
model survtime*event (0) = x1 x2 x3
trttime0 trttimel trttime?2
trttime3 trttimed
/ ties = efron;
trttime0 = trt * rsurvtime O;
trttimel = trt rsurvtime 1;
trttime2 = trt rsurvtime 2;
trttime3 = trt rsurvtime 3;
trttimed = trt rsurvtime 4;
run;

* Number of intervals should be
— subject-matter based

* % % %

— Relatively equal number of events and censored observations
— to be keep standard errors similar
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Output Appendix 4.

Table 11.

Variable
x1
X2
x3
trttimel
trttimel
trttime?
trttime3
trttimed

DF

e e e

Categorical Interaction

Analysis of Maximum Likelihood Estimates

Parameter
Estimate
-0.85988

1.72533
0.02681
-0.21911
-0.11454
-0.03552
0.10308
0.58883

Standard

O O O O O o o o

Error

.01307
.01952
.01075
.06389
.04248
.03583
.03430
.04436

Chi-Square

4327.
7811.
6.
11.

7

0.

9.
176.

4703
5800
2132
7617

.2682

9824
0299
1789

Pr > ChiSqg

AN OO O OO A A

.0001
.0001
.0127
.0006
.0070
.3216
.0027
.0001

Hazard

)
Q
rt
l_l.
(@)

R PP O OOoORK Ul O

.423
.614
.027
.803
.892
. 965
.109
.802
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Comparisons of PH Test Performance

Ng’andu (1997) showed that the test statistics
— The Score Process test
— The Schoenfeld Partial Residuals test
— Covariate by time interaction test

Are practically equally powerful

The Test for Continuous Interaction with time has the
advantage of its simplicity
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Superior Estimates of the time-dependent covariate

Modeling Non-Proportionality

Improved Precision for the other covariates in the model

Output Appendix 3.

Table 9.

Variable
x1

X2

X3

trt
trttime

Variable
x1

X2

X3

trt

DF

N el el

DF

e

Analysis of Maximum Likelihood Estimates

Parameter
Estimate
-0.90746

1.80893
0.08778
-0.54525
0.60965

Standard

Error
.01236
.01735
.01018
.02627
.01208

O O O O O

Chi-Square

5388.3594

10868.2407

74.3177
430.7541
2549.0946

Pr > ChiSqg
.0001
.0001
.0001
.0001
.0001

NN AN AN A

Analysis of Maximum Likelihood Estimates

Parameter
Estimate
-0.75099

1.53452
-0.01535
-0.00532

Standard

Error
.01258
.01705
.01178
.02256

O O O O

Chi-Square
3563.9049
8100.7074
1.6977
0.0556

Pr > ChiSqg
<.0001
<.0001
0.1926
0.8136

Hazard

Ratio
.404
.104
.092
.580
.840

— O = o O

Hazard
Ratio
0.472

4.639

0.985

0.995
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Stratification

e Stratification allows the baseline hazard function to vary across strata

 When the covariate which is non-proportional
— s categorical
— Not of direct interest
— Too difficult to model (functional form)

e Limited method
— Cannot include a variable as a covariate and as a stratification

— Stratified PH models are used when the stratification variables are known to
affect the outcome but the estimates of the effects are considered to be of
secondary importance (Hosmer and Lemeshow 1999)
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Stratified Models

h; (t;X) = hy;(texp{BX;+. . .+ BX}
Creates a different baseline hazard for each stratum, but the
same covariate estimates

Males Females

(

——TrtA

—=—TrtB

Male and females have a non-PH relationship
The treatment effect is PH within both males and females
The hazard ratio Is the same in both groups
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Stratified Models

SAS Code

proc phreg data = recid;
model week*arrest(0) = fin / ties = exact;
strata agecat;

run;

In the strata statement you can have more than one covariate but it must
be categorical or categorized like age above

Or use the flexibility of the strata statement
strata age (10 to 30 by 10);

A separate strata is created from each combination
There are four strata with 2 bi-level variables

strata sex fin;

If you over-stratify, you lose power and information
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Stratified Models with Interaction

In the regular stratified model, there are different hazard functions in each
stratum, but the same hazard ratios for the covariates

You might suspect that a covariate effect differs over a strata

If so, add an interaction term for strata and covariate to the stratified
model

SAS Code
proc phreg data = recid;
model week*arrest (0) = fin fin*race;
strata race;

run;

This model is equivalent to fitting separate models for each level of race
with “fin” as the only covariate

Test the Interaction coefficient if determine if “fin” is different for race.
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Stratification vs. Time*Covariate Interactions

e Time x Covariate Interaction

— Must choose form of time dependency, e.g. x*t vs. x*log(t)
— The parameter estimate, Bz, is easily interpretable for clients

e Stratification
— Takes less computational time
— Models any non-PH relationship; no need to choose form

— No inference is possible for the stratification variable
* Only makes sense for “nuisance variables”

— You cannot stratify by a variable and also include it as a covariate

— Can be useful in modeling clustered data. Use a different strata for each
cluster
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Principles in Survival Analysis

Plot your data

Plot your survivor function

Identify outliers

Check for Missing Values

Check for Informative Censoring

Examine proportional hazards assumption
Evaluate the functional form of covariates
Cautiously interpret tests and confidence intervals
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